
The Effects of Residential Real-Time Pricing

Contracts on Transco Loads, Pricing, and

Profitability:

Simulations using the N-ABLETM Agent-Based Model

Mark A. Ehlen, Andrew J. Scholand, Kevin L. Stamber

Critical Infrastructure Surety Group
Sandia National Laboratories,

Box 5800, Albuquerque, NM 87185-0451 1

Abstract

An agent-based model is constructed in which a demand aggregator sells both
uniform-price and real-time price (RTP) contracts to households as means for adding
price elasticity in residential power use sectors, particularly during peak-price hours
of the day. Simulations suggest that RTP contracts help a demand aggregator (1)
shift its long-term contracts toward off-peak hours, thereby reducing its cost of
power and (2) increase its short-run profits by being one of the first aggregators to
have large numbers of RTP contracts; but (3) create susceptibilities to short-term
market pressures and their coincident prices.

Key words: Real-Time Pricing, Electric Power Market, Market Redesign,
Agent-Based Model
JEL classifications: Q41, D13, D40

1 Introduction

Restructuring of the markets for electric power has led to occasional, yet sub-
stantial increases in average market clearing price, where the clearing price is
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significantly higher than the cost of producing the power. Profit opportuni-
ties in the spot market are sometimes large enough that, where contractually
allowed, generating companies (Gencos) have foregone long term, fixed-price
contracts with their customers to instead sell power in highly lucrative short-
term markets. Additionally, Gencos have withheld production to create market
shortages that drive up market price (See Federal Energy Regulatory Commis-
sion (2002), Brobeck (2002), Yoder and Hall (2000), Yoder and Hall (2002)),
and industrial customers with long-term contracts have stopped production
and sold their contracts for large profits.

Demand aggregators (or Transcos) and the households they serve have few
options for responding to these short-run increases in price — short-run and
long-run contracts in electric power markets operate in a manner that makes
residential power use essentially inelastic in the short run to price changes.
Furthermore, demand aggregators must be economic price takers in the very
short-term, that is, they must respond rapidly to external, largely uncontrol-
lable price and quantity changes. To introduce residential demand-side price
elasticity to the market, the power industry has proposed a number of new
residential contracts, such as real-time pricing (RTP), where demand aggre-
gators charge prices that more closely reflect the cost of electricity during the
particular time of usage, 2 and interruptible-demand contracts, where power
demand aggregators offer a lower rate to a customer but reserve the right to
cut the customer’s power during peak-load hours. With either type of con-
tract, during high-price periods the residential sector responds to peak-hour
prices with lower demand, i.e., their demand is price elastic.

While these contracts may be designed to increase overall efficiency, the indi-
vidual incentives of the power demand aggregators that offer the contracts may
create new economic instabilities. To investigate some of the potential price,
load, and profitability dynamics and instabilities created by these demand-
management policies, we construct a multi-period model in which a demand
aggregator offers real-time price contracts to its residential customers. The
residential sector is modeled with a highly disaggregated collection of house-
holds, who purchase either uniform price contracts or real-time pricing con-
tracts. Households using electricity under a real-time pricing contract actively
decide whether to reschedule their daily use of power, based on their indi-
vidual budgets, their personal tolerance for the inconvenience caused by the
rescheduling, their willingness to experiment with an RTP contract, and the
social acceptance of these new contracts.

Our power demand aggregator has several, sometimes conflicting, business ob-
jectives: first, it must be able to charge prices for both contracts that keep it

2 These prices are typically high during periods of peak usage, when the less effi-
cient, higher-cost generators are brought on-line to meet short-term high demand.
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solvent and maintain reliability of that solvency. Second, it would like signifi-
cant numbers of customers to use RTP contracts and reschedule their demand
to off-peak hours; this decreases its average cost of power and increases the
amount of excess transmission capacity it can sell in short-term, highly prof-
itable transmission markets. Third, it needs to prevent any unexpected, large
increases in peak-hour power use by its customers, since unexpected purchas-
ing of additional peak-load power can be very expensive.

The simulations are constructed from two separate Sandia models: (1) the
residential, commercial, and industrial use sectors, using the NISAC 3 Agent-
Based Laboratory for Economics (N-ABLE); and (b) the power generation
sector, a Java-based simulation running on a separate computer platform. The
two models are synchronized to the current simulation day and exchange data
using Simple Object Access Protocol (SOAP) bound to Hypertext Transfer
Protocol (HTTP). 4 N-ABLE is based on the Sandia Aspen model (Basu and
Pryor (1997), Basu et. al. (1996), Barton et. al. (2000)) and employs a new
object-oriented architecture for the rapid development of different agent types
and communication between different agents on different systems (see Ehlen
and Eidson (2003)). While the generation sector could also have been modeled
in N-ABLE, it is run remotely as part of an on-going NISAC research effort
to develop formal protocols for co-joining different simulations and platforms
into wide-area distributed simulations.

In Section 2 we construct the three parts to the N-ABLE model of power gen-
eration, distribution, and usage: households; representative commercial and
industrial sectors that balance the effect of residential use on total power
loads and system prices; and a demand aggregator (Transco) who sells bilat-
eral contracts to its customers and buys electric power from the generation
sector. The section rigorously formulates a model of how households evaluate,
purchase, and consume power under real-time and uniform pricing contracts.
Section 3 describes the distributed two-model simulation and summarizes with
a discussion of the primary results. Section 4 concludes.

3 National Infrastructure Simulation and Analysis Center, a collaboration between
Sandia National Laboratories and Los Alamos Laboratory funded by the Depart-
ment of Homeland Security.
4 N-ABLE uses the gSOAP C/C++ generator tools (http://www.cs.fsu.edu/ en-
gelen/soap.html) while the generation sector uses the Java 1.4 SOAP Im-
plementation (http://java.sun.com/webservices/) and Apache Tomcat Server
(http://jakarta.apache.org/tomcat/).
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2 The Models

The N-ABLE model of power distribution and use is composed of H house-
holds, representative commercial and industrial sectors, and a single demand
aggregator of this usage (Transco). The Java-based generation sector models
the industry supply of power to the use sectors. Each is discussed in turn.

2.1 Residential Use (Households)

N-ABLE household agents model the hourly electric power use of real house-
holds. Currently, most real households pay a fixed electricity rate regardless
of the time of day and therefore use power at the times and levels they desire.
With real-time pricing contracts, however, households will likely shift some of
their peak-hour power use to low-price hours; for this we need some structure
to how households use power and how they will re-schedule usage under RTP
contracts.

2.1.1 Hourly Consumption

We formulate a framework of residential power use with sufficient fidelity to
characterize households with different power use patterns, different levels of
inconvenience to re-allocating power use, different budget constraints (e.g.,
caused by different income levels), and different sensitivities to external social
conditions. To categorize the relative temporal importance of power usage for
households, independent of the price paid, each household’s total daily desired
use of electric power is divided into three specific types of usage:

Optional Use - this is power consumption of relatively low consequence; if
interrupted, the household does not need to make up for the loss of use. If
power becomes expensive, households are expected to reduce or eliminate
their use of this power. Examples: lighting, radios, and televisions.
Moveable Use - power consumption of medium consequence and flexible
scheduling; if interrupted, its use can be rescheduled to another time.
Examples: dishwashers, dryers, and hot-water heaters.
Immoveable Use - power consumption that must be consumed at its sched-
uled time; if it isn’t, critical needs are not met. Immoveable use typically
fluctuates according the weather of the particular day, being higher dur-
ing extreme hot or cold conditions. Examples: food refrigeration in the
summer and central heating in the winter.

Each usage type is modeled as a diurnal 1×24 vector of hourly usage, in KWh
(see Figure 3 for graph of our distribution of household hourly use). Denoting
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eh,t
j as the consumption of electric power of type j by household h at hour t,
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[
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= Êh

o + Êh
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2.1.2 Re-scheduling Consumption

During the course of the day, a household tries to maintain the desired hourly
levels of all three types of use. If the household has a uniform price contract,
the particular hour of the day is irrelevant and the household can use its
desired levels. If, however, the household has a real-time pricing contract and
average prices are high relative to its budget for power use, then it may want
to re-distribute consumption from high-price to low-price hours of the day.
At the start of the day, a household with a real-time price contract evaluates
if the desired distribution of consumption can be afforded, given the day’s
pricing (defining pt as the price of electric power at hour t) by computing the
total cost of the desired consumption, and seeing if this is not greater than
the daily electricity budget, Id:

{o,m,i}∑
j

24∑
t=1

ptêh,t
j ≤ Id. (4)

If inequality of Equation 4 also does not hold, the household will first attempt
to re-schedule the moveable use to lower-price hours of the day. We use a
“greedy” scheduling algorithm 5 to represent a heuristic human mental plan-
ning process: the household finds the most costly amount of movable usage
(the amount of movable use power times the price of power at that hour)
and moves it to the daytime hour with the lowest price. It then marks both
time slots as “busy,” (that is, not available for rescheduling 6 ) and recomputes

5 For more information on greedy algorithms, see
http://www.nist.gov/dads/HTML/greedyalgo.html.
6 We are modeling how each hour a household can accomplish only so many tasks,
so each off-peak hour that gets new movable load is added to only once.
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Equation 4 with the new t. If the inequality is not satisfied, it continues the
greedy algorithm, addressing the moveable use component that is now the
most expensive hour of the day, until either all the moveable power uses have
been rescheduled or until the budget condition is met.

2.1.3 Selecting the Type of Power Contract

Whether a particular household adopts a real time pricing contract is a com-
plex process dependent on at least four factors: the relative economic ad-
vantage of the alternative contracts, the cost of initiating the change (e.g.,
economic transaction costs), the willingness of the household to experiment
with the new form of power contract, and the social exposure and acceptance
of the contract. For the last factor, a household’s willingness to consider a new
contact, at least for a subset of households, is likely a function of the current
level of adoption in the market place. This adoption, in turn, is a function of
information a household gets from the market and its social/cultural interac-
tions with other households.

Social networks are modeled explicitly in N-ABLE. 7 Since a household that
is satisfied with its RTP contract will likely socially recommend this contract,
N-ABLE increases the probability that any given household will try real time
pricing when the number of households that currently have the contract in-
creases. Likewise, since when a household defects from its RTP contract to
a uniform contract it is likely to socially network to others its dissatisfaction
with the contract (e.g., it was too inconvenient to reschedule usage), a decrease
in RTP contracts decreases the probability that a household will try an RTP
contract. Furthermore, N-ABLE models how a household can sequentially ex-
periment with an RTP contract, find it personally inconvenient, and switch
back permanently to a uniform price contract. So that the simulation starts
with a non-zero number of households with RTP prices, a small fraction of
household agents are instantiated with RTP contracts. The cost of initiating
a change in a contract is modeled on the household side by explicitly impos-
ing a transaction cost; this creates a mild hysteresis in agent choices, thereby
reducing vacillation between contract types.

The economic advantage of the contracts is measured directly by the agents.
At the end of each month, the households compute whether they have actually
saved money under the contract, by comparing their actual expenses under
variable pricing to their expected expenses under fixed pricing (which the
power utility changes and advertises regularly).

7 N-ABLE, to be consistent with mechanisms in economic theory, groups interac-
tions between agents into market-based and non-market-based interactions. Market-
based interactions occur between buyers and sellers in a market (for, say, electric
power). Non-market interactions occur through N-ABLE social networks.
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To capture the rigidity with which some households are willing to make change
of any kind, we randomly assign a probability of switching to each household,
where a pure experimentalist household has a probability of 1.0 of actively
engaging in the above opportunities and a pure passive household a probability
of 0.0. In all cases, a household that has tried an RTP contract and defected
out of it does not experiment again (this will tend to put a physical bound on
the number of steady state RTP contracts in the system). We do, however,
include in the model the migration of households in and out of the residential
sector: each year two percent of households randomly move out of the sector
and are replaced by new households that are willing to experiment with RTP
contracts.

2.2 Commercial and Industrial Use

To capture how the commercial and industrial sectors diminish the potential
effects of household demand elasticity on system loads and market prices, we
also include representative commercial and industrial use sectors, each with
a diurnal power use cycle based on data described below. These sectors are
invariant with respect to their contracts and their hourly usage of power.

2.3 Demand Aggregator (Transmission and Distribution)

To service the power needs of households, the model includes a demand aggre-
gator that purchases power from generating companies and resells it to each
household (and commercial and industrial sectors) through either a uniform
or RTP contract. The power demand aggregator offers contracts at prices that
allow it to satisfy three objectives: (1) deliver the power that is demanded, (2)
maintain the target rate of return from its portfolio of contracts, and (3) create
new opportunities for selling excess transmission capacity on open short-term
markets.

To model objectives 1 and 2, we mathematically define the triplet {ph,t, pc,t, pi,t}
as the prices the demand intermediary charges each household and the com-
mercial and industrial sectors, respectively, at hour t, ct the price it pays
for power at time t, d the current day and r the targeted (i.e., regulated)
rate of return. The demand aggregator’s problem is then to select the set of
uniform and RTP prices it charges to households and the quantities (and as-
sociated prices) it purchases from generation companies, {qd,t, cd,t} such that
it maintains regulated requirements for solvency, i.e., its rate of return equals
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a regulated fixed rate r:

r(ph,t, pc,t, pi,t; cd,t, qd,t) =
R− C

C
= r, (5)

where

R =
30∑

d=1

24∑
t=1

(
H∑

h=1

ph,d,teh,d,t + pc,d,tec,d,t + pi,d,tei,d,t) (6)

C =
30∑

d=1

24∑
t=1

cd,tqd,t (7)

qt = (
H∑

h=1

eh,t) + ec,t + ei,t , t = 1, 2, ..., 24. (8)

Objective 3 is achieved by maximizing its excess peak-hour transmission ca-
pacity that can be sold in short-run markets. This can be achieved by selling
RTP contracts to customers that switch their peak-hour usage to off-peak
hours.

To distribute power from aggregator to user, N-ABLE contains a detailed dis-
tribution network. Thus infrastructure is composed of sinks into which the
commodity is poured, spigots from which the commodity is dispensed, and
the network representation. This highly flexible system is designed to model
real-world systems (power, water, gas, data) where suppliers, customers, trans-
mission, and network topology change over time.

Since we are essentially modeling the “last mile” of distribution, our N-ABLE
infrastructure is composed of one sink for the demand aggregator, a simple
zero-sum network (flow out equals flow in), and thousands of spigots that are
being attached and removed as power users purchase new contracts and switch
contracts. 8

2.4 Generation

We model the generation sector with a typical “hockey stick” representation
of electric power supply (Figure 1) that has two distinct market regimes: a

8 The N-ABLE infrastructure includes an interrupt detector, which determines
whether all “pulls” by the spigots can be met by the capacity of each sink; if not,
then the detector rations the supply to the spigots. Different real-world networks
can be represented by different interrupt detector functions.

8



Fig. 1. Representative Generation Supply Curve

low price regime where additional demand can be met with small increases in
price, and a high price regime where prices rise dramatically with increases in
demand. Since by design our long-run demand will be relatively constant, we
model random price spikes as changes in the supply conditions in the gener-
ation side of the market, specifically, lateral shifts in the vertical part of the
supply curve (as shown by the dotted line). As mentioned in the introduction,
these shifts can also represent withheld base-load generation.

Mathematically, the two distinct price regimes are represented as the sum
of linear and non-linear (quadratic) terms, using Equation 9. This Heaviside
step function 9 removes the non-linear term for quantities less than the system
critical quantity, Qc. At quantities above the system critical quantity, the linear
term makes a contribution, but the non-linear term dominates the equation,
leading to dramatic price spikes.

P h = Pbase + KlinearQ
h + Knonlinear(Q

h −Qc)
2θ(Qh −Qc)]. (9)

This equation can be tuned to represent supply pricing of interest by varying
Pbase, Klinear, Knonlinear, and Qc. To ensure the overall representational accu-
racy of this model, we tuned these four parameters over a demand region of
interest against 1999 regional wholesale price information available from En-
ergy Information Administration (2000) and University of California Energy
Institute (2003). Under normal conditions, prices in RTP contracts fluctu-
ate within the lower, flatter portion of the curve. At random intervals power
supply is reduced such that RTP contract high prices can spike significantly.

9 See http://mathworld.wolfram.com/HeavisideStepFunction.html.
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Table 1
Generation Pricing

Parameter Values

Off-peak/peak prices $21.65 / $49.90

Off-Peak/peak demand 24.8 MWh / 48.4 MWh

Pbase -$8.04

Klinear 1.20 $/MWh

Knonlinear 1.75 $/MWh2

Qc 54.7 MWh

Fig. 2. Daily Data Exchange Between N-ABLE and External Generation and Trans-
mission Models

3 Simulations

Analysis was conducted using a distributed simulation composed of the N-
ABLE model and Java-based generation sector. The combined simulation
leverages the strengths of domain-specific specialized models in exchange for
some loss in speed of execution. An explicit set of basic but extensible com-
munications was established between the two (Figure 2).

3.1 General Mechanics

There are three recurring decision intervals in the simulations:
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Monthly decision interval - At the beginning of each month households
evaluate their spending on electric power; if not satisfied, then they re-
evaluate their current contract. If the household has a uniform contract
and hasn’t had an RTP contract before, it may (probabilistically) experi-
ment and try one. If the household has an RTP contract and that contract
has been either too expensive compared with current uniform rates, too
inconvenient, or both, the household switches to a uniform contract (and
never returns to RTP). The households also pay their end-of-month util-
ity bills. The power demand aggregator evaluates its solvency condition
and if necessary, revises the pricing of its contracts with households.
Daily decision interval - At the beginning of each day, the power demand
aggregator sends to the generation side its forecast for the day’s hourly
power needs, and then receives back the day’s serviceable loads and prices,
which it then adjusts and sends on RTP households. Household agents
with RTP contracts then determine whether and how to adjust their day’s
usage.
Hourly action interval - Each hour, household agents consume electric
power according to their desired levels and log the use for payment at
the end of the month.

To create households with different consumption patterns, random compo-
nents were added to a baseline vector of average power use. Letting ēt

j be the
average level of power used at time t and εt be uniformly distributed around
zero (εt ∼ N(0, σ2)), each agents desired power usage (by type) is modeled as

Êh
j =

[
(ē1

j × ε1) (ē2
j × ε2) ... (ē24

j × ε24)
]
. (10)

3.2 Industry Data

To calibrate our hourly usage profiles with representative data, we applied the
hourly distribution patterns listed in Brown and Koomey (2002), but scaled
down by a factor of 1000 (from GW to MW). The residential data, illustrated
in Figure 3, groups usage by machine (e.g., Air Conditioning); we used this
figure to first classify each group as either optional, movable, or immovable
use, and then estimate each as a percentage of total use. Table 2 lists the
resulting groups and estimated percentages of total.

Figures 4 and 5 were used to create hourly load distributions that, along with
the hourly residential loads, constitutes total load experienced by the local
power utility.

Finally, Table 3 lists the variables and ranges of values used in the sets of
simulations.
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Table 2
Estimating Optional, Immovable, and Movable Power Usage

Type Equipment % Total

Immovable Use Air conditioning 70.0 %

Refrigerator

Cooking

Miscellaneous

Movable Use Washer, Dryer 25.0%

Dishwasher

Domestic Hot Water

Optional Use Television 5.0%

Fig. 3. Household Hourly Use Profile (from Brown and Koomey (2002))
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Fig. 4. Commercial Hourly Use Profile (from Brown and Koomey (2002))

Fig. 5. Industrial Hourly Use Profile (from Brown and Koomey (2002))

Table 4 lists the four sets of simulations that were conducted; each was com-
posed of 10,000 residential sector agents (representing households), one local
power utility, one commercial/industrial use sector, and one generation sector.
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Table 3
Power Provision and Usage Parameters

Agent Parameter Settings

Power Utility Number of agents: 1

Initial advertised price (per KWh): [$0.01, $0.10]

Uniform price change increment (%): 5%

Regulated rate of return (%): 5%

Residential Number of agents: 10,000

Daily consumption: [25.3 KWh, 31.0 KWh]

Variation in average hourly consumption: +/- 25 %

Monthly budget: [$30.0,$50.0]

Cost of switching consumption: [0.00, 0.00001]

Contract transaction cost: [$50, $100]

Probability of experimenting with RTP: [0.0,1.0]

Commercial Number of agents: 1

Daily consumption: 328.3 MWh

Industrial Number of agents: 1

Daily consumption: 319.6 MWh

Table 4
Simulation Sets

Sim. Set Residential Contract

Set #1 Uniform price only

Set #2 RTP price only

Set #3 Uniform and RTP - no price spikes

Set #4 Uniform and RTP - with price spikes

3.3 Summary of Results

When the power distributor offers only uniform price contracts, it can maintain
a fairly stable price for power. Price shocks are generally effectively absorbed
by incremental increases in later uniform prices. Since households achieve no
personal cost savings by shifting power, their actual hourly usage follows their
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Fig. 6. Residential Hourly Usage: Uniform Price Contracts

Fig. 7. Hourly Usage: Residential, Commercial, and Industrial Usages

desired profiles, shown in Figure 6. The contribution that this residential usage
makes to overall system usage (which includes the Commercial and Industrial
sectors) is shown in Figure 7.

When the power distributor offers only RTP contracts, those households that
have relatively low budgets for monthly power usage shift their usage from
peak hours to off peak hours. Figure 8 illustrates how the set of 10,000 agents
shift their desired usage (in the left panel) to a usage that reduces their usage
of peak-hour power (in the right panel). The extent of this load shifting is
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Fig. 8. Residential Hourly Usage: Uniform Price-Only (Left) and RTP-Only Con-
tracts (Right)

Fig. 9. Demand Aggregator’s Hourly Loads: RTP-Only

a function of (1) households’ monthly budgets for power (i.e., their personal
urgency to reschedule usage), (2) the fraction of total usage that they deter-
mine to be movable, and how aggressively the distributor increases its RTP
peak-hour prices from the peak-hour prices it pays for power.

Despite the conservative assumptions used in formulating the model (the frac-
tional contribution of the residential sector to the overall power market, vol-
untary and rational participation in the RTP program, differentiation between
moveable and immovable household power use, and economic and demographic
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Fig. 10. Number of RTP Contracts Over Time: Various Experimenting

variance in households), RTP does have a substantial system-wide effect. In
aggregate, the RTP-only contracts shift the distributor’s total system loads
away from peak hours, as illustrated by the upper curve in Figure 9; the
power demand aggregator’s peak-hour loads reduce by 25 percent and peak
hour prices by 15 percent.

The system-wide effects of residential load rescheduling are in fact so signifi-
cant that cyclic shifts in system peak hours are observed. This phenomenon
occurs as households shift moveable power usage to the lowest cost hour, and
since all households share this information, this hour becomes the new peak
hour, causing the power demand aggregator to raise the rate for this hour. In
response the households shift power use to the new lowest cost hour, initiating
another system peak and subsequent price correction from the demand aggre-
gator. In two or three days, the households move their peak usage back to
the first lowest cost hour. Clearly this price circularity could be ameliorated if
the demand aggregator adjusts the RTP contract prices it charges across its
customer base to prevent such coordinated load shifting.

The most interesting results occur when the power demand aggregator offers
both types of contracts. As illustrated in Figure 10, each month a fraction of
uniform-contract customers experiment and try an RTP contract. Over time,
a fraction of households will stay with RTP; they will be the fraction that
either (1) find it economical to save money by re-scheduling loads to off-peak
hours, (2) have sufficient income that re-scheduling load is unnecessary, or (3)
are passive and are likely not to make a move of any kind; the other fraction
will likely opt out of RTP and stay with uniform thereafter.

This rate of acceptance and defection is a function of the willingness of house-
holds to experiment. The top line shows the number of RTP contracts when
every household agent has an experiment value of 1.0; mass acceptance of RTP
contracts is fast and high, but so is defection out of RTP contracts. As the
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values of experimentation decline, to a range of [0.0, 0.5], acceptance is much
slower but does not include significant defection.

4 Summary and Conclusions

There are three main findings of these simulations. First, a power demand
aggregator increases profits by selling a significant number of real-time pricing
contracts to customers that actively reschedule their use of electric power
during peak load hours. It decreases its average per-MWhr cost of power as
its load moves from peak to off-peak hours, and it increases its opportunities
for selling excess transmission capacity during peak-price hours.

Second, a distributor can realize supra-normal short-term profits if it is an ag-
gressive first-marketer of RTP contracts. By rapidly converting its residential
sector toward shifting load to off-peak hours, it can have excess transmission
capacity that is far greater than its transmission competitors.

Finally, a distributor must be cautious in establishing a RTP contractual struc-
ture in order to avoid any rapid, large-scale switching from RTP to uniform
contracts, such as after a series of large price spikes. If, for example, a distrib-
utor were to pass to its RTP customers a price spike large enough to cause
switching en masse to uniform price contracts, thereby rapidly increasing the
distributor’s load during peak hours, the distributor would potentially have
to purchase peak-price power via short-term, more expensive mechanisms.

Historically, large-scale defections from RTP have occurred, as in the case of
retail customers in San Diego Gas and Electric’s (SDGE) service territory
in Southern California during the summer of 2000. Being the first Investor-
Owned Utility (IOU) to successfully meet obligations and regulatory restric-
tions specified with the Electric Utility Industry Restructuring Act (AB 1890)
and its accompanying rules, SDGE won the right to pass along to all its’ cus-
tomers the real-time market price of power on each monthly bill. The summer
of 2000 saw a substantial increase in price over the previous (uniform) struc-
ture. Customer outrage at this event - across all customer types - led not to
a change in demand behavior, but rather to action on the part of both the
state legislature and the Public Utilities Commission to lock in rate ceilings
of 6.5 cents per kilowatt-hour; and to credit customers for charges above the
rate cap.

Any RTP contractual structure introduced might, therefore, for the sake of
the distributor, have to include a minimum time window within the contrac-
tual obligation, with penalties for early termination, similar to those included
in cellular phone contracts. This would reduce the risk to the distributor of
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rapid change in expected peak-hour demand, with the only avenues of re-
course being (1) meeting the increased demand with short-term, high-price
power contracts, providing an ever-increasing negative feedback on the price
paid by RTP customers and on the willingness of RTP customers to maintain
their contracts, or (2) interruption of non-firm and/or firm demand in place
of meeting this unexpected demand.

In general, the N-ABLE model of residential power consumption is rich enough
and flexible enough to model a range of residential power contracts and asso-
ciated parameters. Further work is planned, therefore, to study various ways
to impose these contractual limits, as well as more complex power demand
aggregator pricing strategies, such as the optimized pricing of residential RTP
hourly premiums above power costs. We also plan on extending our analy-
sis to multiple power region scenarios to better understand pricing strategies
between power demand aggregators that compete to sell excess transmission
capacity.
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